Journal of Organometallic Chemistry, 276 (1984) 317-323 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

ORGANOCOPPER(I) MEDIATED SYNTHESIS OF 1-ALKENYLSILANES AND 1,3-ALKADIENYLSILANES FROM ETHYNYLSILANES

H. WESTMIJZE *, H. KLEIJN and P. VERMEER*

Department of Organic Chemistry, State University at Utrecht, Croesestraat 79, 3522 AD Utrecht (The Netherlands)

(Received June 5th, 1984)

Summary

Ethynylsilanes (I) are converted into α -silyl substituted (Z)-alkenylcopper(I) compounds (II) by treatment with RCu reagents. The adducts II react with a variety of electrophiles to give the 1-alkenylsilanes RCH=C(E)SiR₃' (III: E = H, Cl, Br, I, CN, SnMe₃, SMe, Me, H₂C=CHCH₂). The conversion of I into III (E = H) can also be effected by using homocuprates, R₂CuMgCl, and triorganodicuprates, R₃Cu₂MgCl. The latter reagent should be used when the group R is methyl. An interesting 1,3-diene formation is observed on treating excess of ethynyltrimethylsilane (Ib) with R₃Cu₂MgCl; this reaction involves addition of intermediary vinyl-cuprates to unreacted 1-alkynylsilane (Ib). The intermediary 1,3-dienyl adduct (VIIb) reacts with various electrophiles to give 1,3-dienes, RCH=C(SiMe₃)-CH=C(E)SiMe₃ (VIIIb).

Introduction

The overwhelming number of reports on the use of organocopper(I) reagents shows that the reagents are excellent synthetic tools [1]. A very important property of the reagents is their ability to convert 1-alkynes into vinylcopper(I) species [2]; such a reaction provides an attractive entry into the synthesis of e.g., juvenile hormones [3].

Some time ago, we reported preliminary results on the successful addition of organocopper(I) compounds to ethynyltriphenylsilane [4]. A report appearing at the same time was concerned with ethynyltrimethylsilane [5]. The produced vinylsilanes are useful synthetic intermediates [6]. In this paper, a detailed study of the conversion of ethynylsilanes into vinylsilanes by organocopper(I) species is presented. It is shown that the choice of the organocopper(I) reagent may be crucial. Observation of an unexpected formation of a 1,3-diene is also discussed.

^{*} Present adress: AKZO Chemie, P.O. Box 10, Deventer (The Netherlands).

Results and discussion

General remarks. In this investigation organocopper(I) species of the types RCu, $R_2CuMgCl$, and R_3Cu_2MgCl were used. These copper(I) species were obtained by adding the Grignard reagent RMgCl to appropriate amounts of LiCuBr₂ (solvent, THF) at -60 °C and stirring the resulting mixtures for 0.5 h at -60 °C ($R \neq Me$) or at 0 °C (R = Me). The copper(I) species were then ready for use.

RCu compounds. It was found that the 1-alkynylsilane $Ph_3SiC=CH$ (Ia) undergoes a smooth, regio- and stereo-specific addition of RCu reagents when R is branched or unbranched alkyl but not when R is methyl. Protolysis of the intermediate adduct IIa (Scheme 1) gave 1-alkenylsilanes IIIa in excellent yields. The poor reactivity of MeCu towards alkylacetylenes is well known [2], and so its unreactivity towards Ia was not unexpected. Similar experiments with (trimethyl-silyl)acetylene, Me_3SiC=CH (Ib), gave results that were satisfactory only when R in the reagents used was a branched alkyl group. The use of BuCu, for instance, gave a mixture of the desired adduct (80 rel. %), BuCH=C(Bu)SiMe_3 (18 rel. %) and the 1,3-diene BuCH=C(SiMe_3)CH=CHSiMe_3 (2 rel. %). The mono-ene contaminant arises by coupling of the intermediary vinylcopper(I) compound IIb with BuCu, and the diene by addition of adduct IIb to Ib (see below). The attempted addition of PhCu to Ia,Ib was unsuccessful.

The α -silyl substituted vinylcopper(I) compounds are fairly stable. Vinylcopper(I) compounds usually dimerize rapidly above $-10 \,^{\circ}C$ [2], but solutions of our adducts can be stirred at room temperature during 1.5 h without detectable dimerization (as established for IIa). It could be that the dimerization is inhibited by steric hindrance from the silyl group.

The intermediate adducts shown in Scheme 1 react with a variety of electrophiles. Because of the pronounced thermal stability of the adducts, the presence of stabilizing agents like trimethylphosphite prior to the addition of the elelectrophile is not required. Thus, 1-halovinylsilanes were obtained by treating the intermediary adducts with *N*-chlorosuccinimide (E = Cl), *N*-bromosuccinimide or cyanogen bromide (E = Br), or iodine (E = I). When methyl methanethiolsulfonate, cyanogen chloride or trimethyltin chloride were added, vinylic silanes were formed bearing a MeS, NC or Me₃Sn group in the α -position. Allylation and methylation were carried out with allyl bromide and methyl iodide, respectively. For yields, physical constants and some ¹H NMR data for compounds III, see Table 1.

 $R_2CuMgCl$ and R_3Cu_2MgCl compounds. Silane Ia reacted smoothly with dialkylcuprates, $R_2CuMgCl$, in which R is a linear or branched alkyl group. Protolysis of the intermediary adducts IVa afforded pure (*E*)-1-alkenylsilanes IIIa (Scheme 2).

SCHEME 1

Only one of the two available groups R of the cuprate was transferred at an acceptable rate. Substantial differences in rate between transfer of the first and second group R from such cuprates have been observed in other cases [2,7]. The fact that one of the two available groups R is wasted makes the reaction less attractive than the RCu reaction. Nevertheless, the R₂CuMgCl approach could be valuable where use of RCu is unsuccessful. It was shown (see above) that MeCu shows little tendency to add to Ia. We therefore attempted the conversion of Ia by Me₂CuMgCl into the β -methyl-substituted vinylsilane, but the results were disappointing. Only minor amounts of the adduct were obtained, together with starting material and side-products. The R₂CuMgCl approach in this case, therefore, does not offer any advantage over the RCu reaction. We then turned to the dicuprate Me₃Cu₂MgCl; it was recently shown that this compound is an excellent reagent for conversion of alkylacetylenes into vinylcuprates [8]. We found that silane Ia could be converted regio- and stereo-specifically into the desired adduct IIIa (R = Me, Scheme 2) by using an equimolar amount of Me₃Cu₂MgCl (yield of IIIa, $\approx 70\%$)

The behaviour of silane Ib towards $R_2CuMgCl$ and R_3Cu_2MgCl was investigated for R = n-butyl or isopropyl. Reaction of Ib with an equimolar amount of Bu_3Cu_2MgCl for 1.5 h at -30 °C produced pure adduct Vb (Scheme 3), which on protolysis gave adduct IIIb (R = Bu) in 98% yield. Adduct IIIb (R = Bu) contained 7% of the 1,3-diene BuCH=C(SiMe_3)CH=CHSiMe_3 when it was prepared by treating Ib with 0.9 mol equivalent of Bu_2MgCl for 1.5 h at 0 °C (total yield of IIIb and 1,3-diene, 92%). The ratio IIIb/1,3-diene dropped to 50/50 when 7.0 mol equivalents of Ib were stirred with $Bu_2CuMgCl$ for 72 h at 20 °C (total yield of IIIb and 1,3-diene, 65% based on two available R groups). The interesting diene (compound VIIb in Scheme 3) was formed almost exclusively in the reaction of 7.0 mol equivalents of Ib with the dicuprate Bu_3Cu_2MgCl for 72 h at 20 °C (ratio IIIb/VIIb 4/96; total yield of IIIb and VIIb, 95% based on transfer of all three groups R); similar results were found using i- Pr_3Cu_2MgCl (ratio IIIb/VIIb 9/91; total yield of IIIb and VIIb, 91% based on transfer of all three groups R).

The 1,3-dienyl intermediates VIb reacted smoothly with the electrophiles methylmethanethiol sulfonate and allyl bromide to give compounds VIIb in which E is SMe and allyl, respectively. Details of the preparation of VIIb, their physical constants and some characteristic ¹H NMR data are given in Table 2.

It should be mentioned that suitable conditions have not yet been found for

(Continued on p. 322)

SCHEME 2

	R Me							
	E E E Re	E Config.	(~C/mmHg)		(°C)	δ(E)	δ(H ¹)	$^{3}J(\mathrm{H}^{1},\mathrm{E})$
a a a a a a a 	Et Et	H E^{c}			80-82	6.25	6.22-5 87	16.8
a a a a a a a	Et Et i-Pr	H E			102-103	6.24	6.22	18.9
IIIa IIIa IIIa IIIb IIIb IIIb IIIb	Et I-Pr	Br Z			79 - 80		6.77	
HI a HII a HII b HII b H	i-Pr	Z 1			97–98		6.55	
III a III a III b III b III b III b		H E			84-85	6.20	6.15	18.3
IIIa IIIa IIIb IIIb	i-Pr	Me E			46-48	1.83	6.09	1.7
IIIa IIIb IIIb	t-Bu	H E			80-81	6.21	6.10	18.0
IIIb IIIb IIIb	t-Bu	CI Z			84-85		6.43	
	c-C ₆ H ₁₁	H E			52-53	6.20	6.10	18.0
qIII	Bu	H E	55-57/19	1.4277		5.96	5 62	18.8
111	ı-Pr	H E	65-66/100	1.4187		5.94	5.47	18.0
	i-Pr	Me E	42-43/17	1 4219		1.63	5.50	1.5
1116	i-Pr	CI Z	62-63/18	1.4438			5 72	
am	i-Pr	Br Z	70-72/19	1.4644			5.97	
lIIb	ı-Pr	Z I	70-72/18	1.4960			5.80	
qIII	1-Pr	MeS Z	72-74/19	1.4755		2.12	5.83	
qIII	1-Pr	Me ₃ Sn Z	90-92/20	1.4773		0.13	6.23	
Шb	t-Bu	H E	38-39/18	1.4220		5.97	5.48	19.4
qIII	t-Bu	Me E	55-56/18	1.4365		1.96	5.62	1.5
qIII	t-Bu	CI Z	73-74/18	1.4406			5.86	
qIII	t-Bu	Br Z	76-77/19	1.4678			6.28	
1116	t-Bu	ZI	44-45/0.6	l.4993			6.50	
IIIb	t-Bu	CN E			49-50		6.33	
qIII	t-Bu	C_3H_5 , E	78-80/25	1.4524			5.68	
qIII	t-Bu	MeS Z	70-72/20	1.4774		2.17	6.05	
dIII	t-Bu	Me ₃ Sn Z	110/20	1.4851		015	6.76	
qIII	C-C ₆ H ₁₁	H E	95-96/25	1 4582		5.90	5.55	191
		ID	IIb i -PrBrZIIb i -PrIZIIb i -PrMesZIIb i -BuMesZIIb i -BuH E IIb i -BuMeEIIb i -BuCIZIIb i -BuCIZIIb i -BuCIZIIb i -BuCNEIIb i -BuCNEIIb i -BuMesZIIb i -BuMesZIIb i -BuMesZIIb $C-C_6H_{11}$ HE	IIb i-Pr Br Z $70-72/19$ IIb i-Pr I Z $70-72/18$ IIb i-Pr Mes Z $70-72/18$ IIb i-Pr Mes Z $70-72/18$ IIb i-Pr Mes Z $70-72/18$ IIb i-Bu H E $38-39/18$ IIb t-Bu Me E $38-39/18$ IIb t-Bu Me E $55-56/18$ IIb t-Bu Cl Z $73-74/19$ IIb t-Bu Cl Z $73-74/18$ IIb t-Bu Cl Z $73-74/18$ IIb t-Bu Cl Z $76-77/19$ IIb t-Bu Mes Z $76-77/19$ IIb t-Bu Mes Z $76-77/19$ IIb t-Bu Mes Z $70-72/20$ IIb t-Bu Mes Z $70-72/20$ IIb t-Bu Mes Z $70-72/20$	IIb i-Pr Br Z $70-72/19$ 1.4644 IIb i-Pr I Z $70-72/18$ 1.4960 IIb i-Pr Mes Z $72-74/19$ 1.4755 IIb i-Pr Mes Z $72-74/19$ 1.4755 IIb i-Bu H E $38-39/18$ 1.4720 IIb t-Bu Me E $55-56/18$ 1.4732 IIb t-Bu Me E $55-56/18$ 1.4406 IIb t-Bu Cl Z $73-74/18$ 1.4406 IIb t-Bu Cl Z $73-74/18$ 1.4406 IIb t-Bu Cl Z $73-74/18$ 1.4406 IIb t-Bu Cl Z $70-72/19$ 1.4736 IIb t-Bu CN E $70-72/19$ 1.4678 IIb t-Bu CN E $70-72/20$ 1.4774 IIb t-Bu Mes Z $70-72/20$ 1.4774 IIb t-Bu	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{l c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

4111 D à . . ç ζ Ĺ ć i i i

TABLE 1

320

	ē
	E -
	5
	<u> </u>
	Ae.
	A.
	ñ.
_	8
-	Ϋ́
	H
2	X
	ີຍິ
	Σ
	S.
ŝ	С С
	÷
4	0
	R
	ŝ
	z
	Ē
	Ξ
	4
	Ļ,
	Å
	Q.
	7
	17
	Ā
	р
	2
	E.
	8
	š
	2
	Ē
	0
	Б
	3
	Δ
	Z
	< <
	E.
	Z
	Γ
	S
	Z
	8
	ĩ
	Z
	S
	S
	£
	a
	ź
	õ
	Ē
	×
	Å
	PA
	ш
	PR

TABLE 2

Copper(I) "	Electrophile	Produ	ct VIIb		Yield ^c	B.p.	²⁰ ²⁰	NN HI	AR (CCl₄, Me	si)	
reagent		×	Е	Config. of $\Delta^{1,2,b}$	(%)	(°C/mmHg)		δ(E)	δ(H-C ²)	δ(H-C ⁴)	$^{3}J(\mathrm{H-C}^{2},\mathrm{E})$
Bu ₁ Cu ₂ MgCl	H ₁ O [®]	Bu	H	E	96	110-111/15	1.4653	5.66	6.82	5.75	19.1
1 4	C,H,Br ^d	Bu	C,H, ^d	E	87	140-141/19	1.4717		6.21	5.71	
	MeSO, SMe	Bu	SMe	Z	8	120-122/2	1.4885	2.10	6.31	5.56	
i-Pr,Cu,MgCl	H ₁ 0 [®]	i-Pr	Н	E	80	95-97/19	1.4598	5.68	6.80	5.53	19.2
) 1	MeSO, SMe	i-Pr	SMe	Z	78	125-126/18	1.4854	2.12	6.46	5.42	

^a 7.0 mol equiv. of silane Ib were used. ^b Configuration of $\Delta^{3,4}$ is assumed to be *E* in all cases, being based on protolysis of the unitial intermediate Vb (studied for R = Bu). ^c Calculated on the cuprate and based on transfer of all groups R. Purity > 95%, as estimated from ¹H NMR and GLC analysis. ^d C₃H₅ = H₂C=CHCH₂.

SCHEME 3

satisfactory conversion of compounds such as $CH_3C \equiv SiR_3'$ into vinylic silanes by the routes described above. In this respect, the behaviour of such 1-alkynylsilanes resembles that of normal non-terminal alkynes [9].

Experimental

All reactions were performed under dry nitrogen. Tetrahydrofuran was distilled from LiAlH₄. Grignard reagents were prepared from the organic chloride in THF; their molarity was determined by Watson's titration method [10]. Lithium bromide was dried at 220 °C in high vacuum and was used as a 3.0 M solution in THF for the preparation of the cuprate LiCuBr₂ by mixing it with an equimolar amount of cuprous bromide. The 1-alkynylsilanes were made by the procedure described in ref. 11. ¹H NMR data for the products were determined on a Varian EM-390 spectrometer.

(a). Preparation of the organocopper(I) reagents. To a stirred homogeneous solution of LiCuBr₂ (0.01 or 0.02 mol) in THF (25 ml) was added a $\approx 1.0 M$ THF solution of RMgCl (0.01 mol for the RCu reagents, 0.02 mol for the R₂CuMgCl reagents, and 0.03 mol for the R₃Cu₂MgCl reagents), at 0°C in the case of R = Me and at -60°C in the other cases. The resulting mixture was stirred for 0.5 h at 0 and -60°C, respectively, and the solution obtained was used as described below.

(b). Conversion of 1-alkynylsilanes into III. To the copper(I) reagent (0.01 mol, see under (a)) the 1-alkynylsilane I (0.01 mol) was added, at -60° C. The mixture was then stirred for 24 h at 0°C (conversion of Ia by Me₃Cu₂MgCl), for 1.5 h at 20°C (conversion of Ia by RCu and R₂CuMgCl), for 1.5 h at 0°C (conversion of Ib by RCu and Bu₂CuMgCl), or for 1.5 h at -30° C (conversion of Ib by Bu₃Cu₂MgCl). Protolysis of the resulting adducts afforded compounds III with E = H. Introduction of the other groups E into III was carried out by adding 1.1 mol equivalent of the appropriate electrophile at -60° C to the intermediate adduct. The mixture was stirred for 10 min at -60° C, then the temperature of the mixture was continued for 30 min. Work-up was carried out by pouring the mixture into an aqueous solution of NH₄Cl containing NaCN (1 g). The product was extracted with pentane/ether (1/1 v/v). After washing and drying (MgSO₄) of the extract, the

solvent was stripped off. The residue was crystallized from methanol or distilled in vacuum (see Table 1). The purity of the compounds III obtained was at least 98% by GLC (SE 33 column).

(c). Conversion of 1-alkynylsilane Ib into VIIb. To the copper(I) reagent R_3Cu_2MgCl (0.01 mol, see under a) the 1-alkynylsilane Ib (0.07 mol) was added at -60 °C. The mixture was stirred for 72 h at 20 °C. Reaction of the intermediate adduct with electrophiles and work up was carried out as described for IIIb. Distillation of the crude products at reduced pressure gave compounds VIIb, with a purity of at least 98% by GLC (SE 33 column). Physical constants and other data for VIIb are shown in Table 2.

Acknowledgement

This investigation was supported by The Netherlands Foundation of Chemical Research (SON) with financial aid from The Netherlands Organization for the Advancement of Pure Research (ZWO).

References

- 1 For reviews, see: J.F. Normant, Synthesis, (1972) 63; G.H. Posner, Org. React., 19 (1972) 1; G.H. Posner, ibid., 22 (1978) 253; A.E. Jukes, Adv. Organomet. Chem., 12 (1975) 215; J.F. Normant and A. Alexakıs, Synthesis, (1981) 841.
- 2 For leading references, see: J.F. Normant, G. Cahiez, M. Bourgain, C. Chut and J. Villieras, Bull. Soc. Chim. Fr., (1974) 1656; H. Westmijze, J. Meijer, H.J.T. Bos and P. Vermeer, Recl. Trav. Chim. Pays-Bas, 95 (1976) 299, 304; A. Marfat, P.R. McQuirk and P. Helquist, J. Org. Chem., 44 (1979) 3888.
- 3 H. Kleijn, H. Westmijze, J. Meijer and P. Vermeer, Recl. Trav. Chim. Pays-Bas, 100 (1981) 249, and ref. cited therein.
- 4 H. Westmijze, J. Meijer and P. Vermeer, Tetrahedron Lett., (1977) 1823.
- 5 M. Obayashi, K. Utimoto and H. Nozaki, Tetrahedron Lett., (1977) 1805.
- 6 For a comprehensive review, see: T.H. Chan and I. Fleming, Synthesis, (1979) 761.
- 7 J. Meijer, H. Westmijze and P. Vermeer, Recl. Trav. Chim. Pays-Bas, 95 (1976) 102.
- 8 H. Westmijze, H. Kleijn, J. Meijer and P. Vermeer, Recl. Trav. Chim. Pays-Bas, 100 (1981) 98.
- 9 J.K. Crandall and F. Collonges, J. Org. Chem., 41 (1976) 4089.
- 10 S.C. Watson and J.F. Eastham, J. Organomet. Chem., 9 (1967) 165.
- 11 H. Westmijze and P. Vermeer, Synthesis, (1979) 390.